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1 Introduction

Incomplete data is a common challenge in many fields of research. Frequently used ad hoc strategies to
deal with missing data, such as listwise deletion or mean imputation often lead to erroneous inferences in
realistic situations. These strategies don’t consider the multivariate nature of the data: the missingness
can relate to observed values, which can lead to biased estimates and inaccurate variance estimates
(Austin et al., 2021; Enders, 2017; Kang, 2013; van Buuren, 2018). Rubin defined three of such missing
data mechanisms: Missing Completely At Random (MCAR) where the cause of the missing data is
unrelated to the data, Missing At Random (MAR) where the missing data is related to the observed
data, and Missing Not At Random (MNAR) where the missing data may also be related to unobserved
data (Rubin, 1976).

Multiple imputation (MI; Rubin 1987) is considered a valid method for dealing with incomplete data,
it allows us to separate the missing data problem from the analysis problem (Audigier et al., 2018; Austin
et al., 2021; Burgette and Reiter, 2010; Enders, 2017; Grund et al., 2021; Hughes et al., 2014; Mistler
and Enders, 2017; Van Buuren, 2007; van Buuren, 2018). MI is used to impute each missing value in
the dataset more than once given the observed data, considering necessary variation associated with the
missingness problem. The multiply imputed datasets are analyzed, and the corresponding inferences are
pooled according to Rubin’s rules (Austin et al., 2021; Carpenter and Kenward, 2013; Rubin, 1987; van
Buuren, 2018). However, specifying the imputation models, the models used to impute the missing data,
can be challenging. The concept of congeniality dictates that the imputation models should be at least
as general as the analysis model and preferably all-encompassing (Bartlett et al., 2015; Enders et al.,
2018a; Grund et al., 2016, 2018b; Meng, 1994). Otherwise, it will not capture every aspect of the data
and the analysis model estimates may be biased. So, when the complexity of data increases, specifying
the imputation models becomes more difficult (Grund et al., 2018b; van Buuren, 2018).

Congeniality-issues become more pronounced when MI is used in a multilevel data context (Audigier
et al., 2018; Dong and Mitani, 2023; Enders et al., 2020, 2018a,b, 2016; Grund et al., 2016, 2018a,b,
2021; Lüdtke et al., 2017; Mistler and Enders, 2017; Quartagno and Carpenter, 2022; Resche-Rigon
and White, 2018; Taljaard et al., 2008; van Buuren, 2018). Multilevel data is hierarchically structured,
where, for example, students are nested within schools (Hox and Roberts, 2011; Hox et al., 2017). When
analyzing multilevel data, the hierarchical structure should be considered. Ignoring the hierarchical
structure will underestimate the intra-class correlation (ICC; Hox and Roberts 2011; Lüdtke et al. 2017;
Taljaard et al. 2008; van Buuren 2018), which can be interpreted as the proportion of the total variance
at level-2 (Gulliford et al., 2005; Hox and Roberts, 2011; Shieh, 2012). This can be done using multilevel
models (MLM; Hox and Roberts 2011; Hox et al. 2017; Lüdtke et al. 2017). MLMs can contain both
level-1, and level-2 variables, relating to the individual and class respectively, random intercepts, random
slopes, and cross-level interactions (Hox and Roberts, 2011; Hox et al., 2017). Typically, the complexity
of the multilevel analysis model is built step-wise with non-linearities, meaning the analysis model is
not determined beforehand (Hox and Roberts, 2011; Hox et al., 2017). Thus, including the hierarchical
structure, along with the complicated non-linearities from cross-level interactions in imputation models
can be quite challenging (Burgette and Reiter, 2010; Hox and Roberts, 2011; van Buuren, 2018) and a
very complex model might not converge (van Buuren, 2018).

A popular and flexible implementation of MI is fully conditional specification (FCS), otherwise known
as chained equations(Audigier et al., 2018; Burgette and Reiter, 2010; Grund et al., 2018a; Van Buuren,
2007). FCS iteratively imputes each incomplete variable conditional on complete and previously imputed
variables (Enders et al., 2018a,b, 2016; Grund et al., 2018a; Hughes et al., 2014; Mistler and Enders,
2017; van Buuren, 2018). In a multilevel context, FCS employs univariate linear mixed models to account
for the hierarchical structure (Enders et al., 2018a; Mistler and Enders, 2017; Resche-Rigon and White,
2018). Furthermore, FCS can be used to impute non-linearities, such as cross-level interactions, by using
’passive imputation’ or defining a separate imputation model for the non-linearities (Grund et al., 2018b;
van Buuren, 2018). Still, imputation models including cross-level interaction or non-linear terms in FCS
are very complicated (Grund et al., 2018b, 2021) and, thus, researchers’ focus has predominantly been
on the inclusion of random intercepts and slopes, but not of cross-level interactions (Enders et al., 2020,
2018a,b, 2016; Grund et al., 2016, 2018a).

Using non-parametric tree-based models might solve this problem because these models do not assume
a specific data distribution and, thus, implicitly model non-linear relationships and interactions between
the predictor variables, and handle continuous and categorical variables simultaneously (Breiman et al.,
1984; Burgette and Reiter, 2010; Chipman et al., 2010; Hill et al., 2020; James et al., 2021; Lin and Luo,
2019; Salditt et al., 2023). In a single-level imputation context, the use of tree-based, non-parametric
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models like regression trees, random forests, or Bayesian Additive Regression Trees (BART) simplified
imputation models and performed better than parametric methods: the imputations showed better
confidence interval coverage of the population parameters, lower variance and lower bias, especially in
non-linear and interactive contexts (Burgette and Reiter, 2010; Silva and Gutman, 2022; Xu et al., 2016).
Waljee et al. (2013) also found lower imputation error when imputing with a random forest algorithm
compared to multivariate imputation by chained equations (MICE), K-nearest neighbors (KNN) and mean
imputation.

BART models have been implemented in a multilevel prediction context. However, multilevel-BART
models (M-BART) have predominantly been implemented with only random intercepts (Chen, 2020; Tan
et al., 2016; Wagner et al., 2020; Wundervald et al., 2022). In a prediction context, Wagner et al. (2020)
have found that this random intercept M-BART model provided better predictions with a lower mean
squared error (MSE) compared to a parametric MLM, Tan et al. (2016) found higher area under the
curve (AUC) values compared to a singel-level BART model and linear random intercept model, and
Chen (2020) found better predictions and better coverage of the estimates compared to parametric models
and a single-level BART model. Other researchers modeled the random intercept as an extra split on
each terminal node and found a lower MSE compared to a standard BART model and parametric MLMs
(Wundervald et al., 2022). Dorie et al. (2022) developed a multilevel BART model that included random
intercepts and random slopes by modeling the random parts with Stan (Lee et al., 2017) and the fixed
parts with BART. Their results showed that their algorithm stan4bart showed better coverage of the
population values and lower root mean squared error (RMSE) compared to BART models with varying
intercept, BART models ignoring the multilevel structure, bayesian causal forests, and parametric MLMs.

Despite these promising findings, M-BART models have yet to be implemented in a multilevel multiple
imputation context. Thus, my thesis research question will be: Can multivariate imputation by chained
equations through a multilevel bayesian additive regression trees model improve the bias, variance, and
coverage of the estimates in a multilevel context compared to current practices? Given the success of
non-parametric models in single-level MI, I anticipate that employing M-BART models in a multilevel
missing data context will reduce bias, accurately model variance, and improve estimate coverage compared
to conventional implementations of multilevel MI, single-level MI, and listwise deletion in the R-package
MICE (Buuren and Groothuis-Oudshoorn, 2011). However, in this research report, I will only focus on
the implementation of M-BART models in a prediction context and asses their performance in terms of
relative bias and MSE. The research question is: Can M-BART models improve the relative bias and
MSE of the predictions in a multilevel context compared to a single-level BART model?.

The research report’s sections will cover theoretical background, methods for evaluating M-BART
models, preliminary results, and discussion of next steps.

2 Method

2.1 Theoretical background

2.1.1 Bayesian Additive Regression Trees (BART)

BART is a sum-of-trees model proposed by Chipman et al. (2010) that has regression trees as its building
blocks (Chipman et al., 2010; Hill et al., 2020; James et al., 2021). Regression trees divide the data into
subgroups by recursively splitting the data into binary subgroups based on the predictors minimizing
variability within the subgroups (Hastie, 2017; James et al., 2021; Salditt et al., 2023). Recursive binary
partitioning of the predictor space doesn’t assume a specific data form, making this a non-parametric
model (Hastie, 2017; James et al., 2021; Salditt et al., 2023) and allows regression trees to model non-
linearities well and automatically (Burgette and Reiter, 2010; Hill et al., 2020). Chipman et al. (2010)
define the BART model as:

f(x) =

m∑
k=1

g(x;Tk,Mk), (1)

where f(x) is the overall fit of the model: the sum of m regression trees, x are the predictor variables, Tk

is the kth tree and Mk is the collection of leaf parameters within the kth tree (Chipman et al., 2010; Hill
et al., 2020; James et al., 2021). The data are assumed to arise from a model with additive normally
distributed errors: Y =

∑m
k=1 g(x;Tk,Mk) + ϵ, ϵ ∼ N (0, σ2). Next to the sum-of-trees model, BART also

includes a regularization prior that constrains the size and fit of each tree so that each contributes only a
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small part to prevent overfitting (Chipman et al., 2010; Hill et al., 2020; James et al., 2021). BARTs are
estimated using the Bayesian back-fitting Markov Chain Monte Carlo (MCMC) algorithm. It updates
individual trees, considering the remaining trees, their associated parameters, and the residual standard
deviation (σ). It fits a new tree to the partial residuals, ri, treating them as the data, by perturbing
the tree from the previous iteration. Perturbations entail either growing, pruning, or changing a tree.
Growing means adding additional splits, pruning removes splits, and changing changes decision rules.
The algorithm stops after the specified number of iterations. The partial residuals are defined as:

ri = yi −
∑
k′<k

f̂ b
k′(xi)−

∑
k′>k

f̂ b−1
k′ (xi),with i = 1, . . . , N (2)

where f̂ b
k(xi) is the prediction of the kth tree in the bth iteration for person i and sample size N .

2.1.2 Multilevel-BART (M-BART)

Chen (2020); Wagner et al. (2020) and Tan et al. (2016) define a M-BART model including a random
intercept building on the work of Lin and Luo (2019). The M-BART algorithm breaks down the observed
variable into fixed and random components. The fixed components are modeled by BART and the random
components are modeled by a linear mixed effects model (Chen, 2020; Tan et al., 2016; Wagner et al.,
2020). The BART model (1) can be extended to include a random intercept by:

f(x) =
m∑

k=1

g(x;Tk,Mk) + αj , (3)

where, now, f(x) is the overall fit of the model incorporating random intercept αj for cluster j.

2.2 Simulation study

For this research report, I conduct a simulation study to examine the performance of three M-BART
models in a multilevel prediction context compared to a single-level BART model.

2.2.1 Data generating mechanism

The population data-generating mechanism will be based on the following MLM:

yij = β0j + β1jX1ij + β2jX2ij + β3jX3ij + β4jX4ij + β5jX5ij + β6jX6ij + β7jX7ij + ϵij , (4)

β0j = γ00 + γ01Z1j + υ0j , (4.1)

β1j = γ10 + γ11Z1j + υ1j , (4.2)

β2j = γ20 + γ21Z1j + υ2j , (4.3)

β3j = γ30 + γ32Z2j + υ3j , (4.4)

β4j = γ40 + υ4j , (4.5)

β5j = γ50 + υ5j , (4.6)

β6j = γ60 + υ6j , (4.7)

β7j = γ70, (4.8)

where yij is a continuous level-1 outcome variable for person i in group j and Z1j and Z2j are continuous
level-2 variables. The random intercept β0j is determined by the grand mean γ00, the group effect γ01Z1j

and the group-level random residuals υ0j . The regression coefficients β1j , β2j , and β3j for the continuous
variables X1ij , X2ij , and X3ij depend on the intercepts γ10, γ20, and γ30, the cross-level interactions
γ11Z1j , γ21Z1j , and γ32Z2j , and the random slopes υ1j , υ2j , and υ3j . The regression coefficients β4j ,
β5j and β6j are determined by the intercepts γ40, γ50 and γ60 and the random slopes υ4j , υ5j and υ6j .
The regression coefficient β7j is determined by the intercept γ70. The residuals and random slopes υ0j ,
υ1j , υ2j , υ3j , υ4j , υ5j , and υ6j and ϵij follow a zero-mean normal distribution. The variance of υ0j , the
group-level random residuals, were scaled such that the specified ICC value as in table 1 was obtained.
υ1j , υ2j , υ3j , υ4j , υ5j , and υ6j all have a variance of 1. ϵij had a variance of 25. X1, X2, X3, X4,
X5, X6 and X7 are multivariate normally distributed: Xij ∼ N (µ,Σ), with µ = (0, 0, 0, 0, 0, 0, 0) and
Σ = diag(6.25, 9, 4, 11.56, 4, 2.5, 19.36) with no co-variances. The level-2 variables Z1 and Z2 are also
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multivariate normally distributed: Zj ∼ N (µ,Σ), with µ = (0, 0) and Σ = diag(1, 2.56). The group-level
effects (γ01 and γ02) were set to .5, the cross-level interactions (γ11, γ21, and γ32) were set to .35, and
the overall intercept (γ00) was set to 10. The within-group effect sizes (γ10, γ20, γ30, γ40, γ50, γ60, and
γ70) were varied in the simulations.

2.2.2 Simulation design

Table 1: Simulation design

Parameter Values
Number of clusters (j) 30, 50
Within-cluster sample size (nj) 5, 15, 35, 50
Intraclass Correlation (ICC) 0, .05, .3, .5
Within-group effect size (γ) .2, .5, .8

Table 1 shows the variations considered in the sim-
ulation study. They are realistic in practice and/or
previously proposed (Enders et al., 2020, 2018b;
Grund et al., 2018b; Gulliford et al., 1999; Hox
et al., 2017; Murray and Blitstein, 2003). For each
combination of varying parameters, 6 datasets are
simulated to reduce computational time. 4 differ-
ent models are compared: a single-level BART,
single-level BART with groups modelled using
dummy-variables, a multilevel BART model incorporating a random intercept (Chen, 2020; Tan et al.,
2016; Wagner et al., 2020; Wundervald et al., 2022), and a multilevel BART model combined with Stan
to model the random parts of the models (Dorie et al., 2022). The first three models are fitted with the
package dbarts (Dorie, 2023a) and the last with the package stan4bart (Dorie, 2023b) in R (R Core
Team, 2023). The default arguments from the function rbart vi are used for all models, as well as the
default priors.

2.2.3 Evaluation

The fitted models are evaluated in terms of relative bias and Mean Squared Error (MSE) of the predictions
(Morris et al., 2019):

Bias =
1

nsim

nsim∑
t=1

(θ̂t − θ), (5)

MSE =
1

nsim

nsim∑
t=1

(θ̂t − θ)2, (6)

(5a)

where θ̂t is the estimated parameter in simulation t, θ is the true value, and nsim is the number of
simulated datasets and smaller is better.

3 Results

Figure 1 shows the average relative bias over the simulations for all models, simulated datasets, every
ICC value, and within-group effect size. On the x-axis, we can see the different simulated datasets with
their names specifying the total sample size, with respectively the number of groups and group sizes
within parentheses. We can see that when there is no multilevel structure in the dataset, ICC = 0, the
models perform similarly in terms of relative bias: overall, the bias is around zero. We can see a slight
increase in uncertainty when the total sample size is small for all γ and ICC. This effect is amplified when
γ and ICC increase. However, when considering the stan4bart model, which models the random parts
of the model in Stan and the fixed parts in BART, the uncertainty stays considerably constant when
increasing the ICC : the relative bias is higher when the total sample size is small, but the uncertainty
does not seem to significantly increase with higher ICC or higher γ. Overall, stan4bart has the lowest
bias for all γ and ICC compared to the other models.
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Figure 1: Bias of the estimates for all simulated datasets over six simulations with ICC values in the
rows and within-group effect sizes in the columns for four models: single-level BART (bart), single-level
BART with group dummies (gbart), random intercept multilevel BART (rbart) and random intercept
random slope multilevel BART (stan4bart). The x-axis denotes the total sample size (number of groups,
group size).

Figure 2 shows the average mean squared error (MSE) for all models, datasets, ICC values, and
within-group effect sizes (γ). Figure 2 shows that when the ICC = 0 the models perform well and almost
the same. When increasing the ICC, we can start to see a divide in the performance of the models. When
ICC = .05 the models bart, gbart and rbart perform similarly. Increasing the ICC to .3 or .5, the

5



performance of the models separates when the dataset is small: bart now has the highest MSE with
gbart performing slightly better. rbart performs better than bart and gbart, but when the datasets
increase in size, it performs similarly to them. stan4bart consistently outperforms the other three models
in terms of MSE for all ICC and γ values.

Figure 2: Mean Squared Error (MSE) of the estimates for all simulated datasets over six simulations with
ICC values in the rows and within-group effect sizes in the columns for four models: single-level BART
(bart), single-level BART with group dummies (gbart), random intercept multilevel BART (rbart) and
random intercept random slope multilevel BART (stan4bart). The x-axis denotes the total sample size
(number of groups, group size).
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4 Discussion

In this research report, I have investigated the performance of different BART models in terms of relative
bias and MSE of the estimates. I considered four different models: a single-level BART model, a single-
level BART model including a group-dummy, a multilevel BART model including a random intercept,
and a multilevel BART model combining Stan and BART. The results indicate that the stan4bart model
performs best out of the four models: it shows to lowest relative bias as well as the lowest MSE. Meaning
that, possibly, accounting for more multilevel structure in the model improves it in terms of relative
bias and MSE. These results agree with Dorie et al. (2022), who found that the stan4bart algorithm
performed better in terms of coverage of the population values and RMSE compared to single-level BART
models, BART models including a random intercept, bayesian causal forests, and parametric MLMs.

However, this report has a few limitations. Since I only simulated 6 data sets per scenario to reduce
computational constraints, the results might not be fully representative of the performance of the models.
Furthermore, I only compared single- and multilevel BART models. Future research could consider
bayesian causal forests, other tree-based methods, or parametric MLMs as well. Lastly, I only considered
the relative bias and MSE of the predictions but did not consider the relative bias and MSE of the
estimated parameters to visualize where the bias is present in the models, which could be interesting in
evaluating the performance of the models.

Table 2: Simulation design for the thesis

Parameter Values
Number of clusters (j) 30, 50
Within-cluster sample size (nj) 5, 15, 35, 50
Intraclass Correlation (ICC) 0, .05, .3, .5
Missing data mechanism MAR, MCAR
Amount of missingness 0%, 25%, 50%
Within-group effect size (γ) .2, .5, .8

Building on these results, I will implement the
stan4bart as an imputation method within the
package MICE (Buuren and Groothuis-Oudshoorn,
2011) in my thesis. I will compare the performance
of the stan4bart model to other imputation meth-
ods: 2l.pmm, 2l.lmer, 2l.pan, 2l.jomo, rf

and single-level pmm and complete case analysis
in the R-package MICE (Buuren and Groothuis-
Oudshoorn, 2011). They will be evaluated in terms
of relative bias, modeled variance, and the 95%
confidence interval coverage of the estimates (Ober-
man and Vink, 2023). The simulation design will be extended to include more parameters: the missing
data mechanism and amount of missingness. The simulation design is shown in table 2. For each
combination of parameters, a 1000 replicated datasets will be generated. The preliminary results show
great promise for the next steps of my thesis. Hopefully, employing the stan4bart model in a multilevel
imputation context will reduce bias, accurately model variance, and improve estimate coverage.
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